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The problem of the determination of stochastic constitutive laws for input to 
continuum-type boundary value problems is analyzed from the standpoint of the 
micromechanics of polycrystals and matrix-inclusion composites. Passage to a 
sought-for random continuum is based on a scale dependent window playing the 
role of a Representative Volume Element (RVE). It turns out that an elastic 
microstructure with piecewise continuous realizations of random tensor fields of 
stiffness cannot be uniquely approximated by a random field of stiffness with 
continuous realizations. Rather, two random continuum fields may be introduced 
to  bound the material response from above and from below. As the size of the 
RVE relative to the crystal size increases to infinity, both fields converge to a 
deterministic continuum with a progressively decreasing strength of fluctuations. 
Since the RVE corresponds to a single finite element cell not infinitely larger than 
the crystal size, two random fields are to be used to bound the solution of a given 
boundary value problem at a given scale of resolution. The method applies to a 
number of other elastic microstructures, and provides the basis for stochastic 
finite differences and elements. The latter point is illustrated by an example of a 
stochastic boundary value problem of a heterogeneous membrane. 

1 I N T R O D U C T I O N  

In recent years there has been a new development in 
computat ional  mechanics: stochastic finite elements; see 
for example Refs 1-3. All the researchers in this area 
working with linear elastic structural responses rely, to 
the best of  our knowledge, on a straightforward 
generalization of a continuum constitutive law, namely 
that the stiffness tensor is a random field with 
continuous realizations C(x,w)(=Cijkl(X,W)) in the 
body domain* 

g = C(x, co)e co e f~ x - (Xl, x2) (1) 

Here, in keeping with the terminology of random 
processes, co indicates one realization from the under- 
lying sample space f~. The assumption (1) tacitly implies 
the invertibility of  such a constitutive law in the sense of  
existence of its inverse 

£ = S(X, co)¢ S(x,  co) = C -1 (X, 03) (2) 

whereby e in (1) and q in (2), respectively, are uniform 
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fields applied to a hypothetical unspecified Represen- 
tative volume Element (RVE) of  a random medium. 
Furthermore,  typically, an isotropic form is adopted 

~r/j = A(x, co)cS/jekk + 2#(X, co)g/j (3) 
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by simply postulating the Lam6 constants to be random 
fields. 

While the effort in stochastic finite elements is on the 
development of  efficient numerical methods for the 
solution of  boundary value problems, the assumptions 
(1), (2) and (3) do not adequately account for the 
material microstructure. Thus, the present paper  sets out 
to provide that missing link, and, as a byproduct,  to 
examine the validity of  (1), (2) and (3). At the same time, 
our results have applicability to stochastic finite 
difference methods, which do not yet appear to have 
been developed. 

As a starting point we take the fact that discreteness 
of  materials is the key cause of their nondeterministic 
constitutive response. Thus, the microstructure should 
provide the basis for the development of  continuum type 
constitutive laws. We discuss this using the paradigm of 

*Hereinafter, _x and x denote second and fourth rank tensors, 
respectively. 
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a medium with Voronoi geometry. One major  advantage 
of  choosing such a setting is the possibility to grasp both 
the geometrical and the physical microscale material 
randomness,  while another is the possibility of  assessing 
the statistics of  fluctuations as a function of  the scale of  
observation. The latter observation leads to the concept 
of  a scale-dependent RVE, which forms the basis of  a 
strategy for determination of effective constitutive taws 
of a class of  linear elastic random microstructures, 
continuum random field characterizations of  such 
microstructures, and methods involved in the solution 
of  stochastic boundary value problems. We illustrate 
this approach,  and especially this last point, with an 
example of  a membrane  with a random microstructure, 
where two random continuum approximations,  an 
upper and lower a lower one, have to be employed in 
order to establish the bounds on response of an actual 
membrane.  

2 M O D E L  OF A R A N D O M  M I C R O S T R U C T U R E  

A fundamental  role in our formulation is played by the 
concept of  a random microstructure, which, as is 
commonly done in mechanics of  random media, 4 is 
taken as a family B = {B(co); aJ c f2} of deterministic 
media B(a~), where co indicates one specimen 
(realization), and f~ is an underlying sample (probo 
ability) space. Formally, f~ is equipped with a o-algebra 
F and a probabili ty distribution P. [n an experimental 
setting P may be specified by a set of  stereologica! 
measurements,  while in a theoretical setting P is usually 
specified by a chosen model of  a microstructure. For  the 
purpose 
of further discussion, we take every specimen B(cu) to 
be modeled by a realization of  a Voronoi tessellation 
(Fig. l(a)), which corresponds to one realization of a 
space-homogeneous planar Poisson process of  a given 
density. Each celI of  this tessellation, centered at x, is 
assumed to be occupied by a homogeneous continuum 
governed by a stiffness tensor C(x, co) following the same 

space-homogeneous probabili ty distribution P(C~ a~d 
satisfying the so-called ellipticity conditions: _~c~, ,3 > 0 
such that for any ~ the following inequalities hoid 

Qeg < eCe < ~{e .~. 

Thus~ we have a realistic model of  an ergodic 
potycrystaltine medium withom holes and ctNd inclu- 
sions described by a random field C = Jc~ix J~-x ~- 
B. co C f2} with piecewise-constant realizations, ir~ 
particular, we have for every componen~ C;a~(,~ ;.f 
C(o:), %r every co E 

tim -1 [ Co.kl(X.~)dV= Fi/k = /,CffkI) 

Ciikl(X, ~) dP(cd) :5] 

at any x in the domain of Be, where ___ and (2C) denote 
the volume and ensemble averages of  C_, respectively. ~n 
fact (C) is a so-called Voigt for upper) bound C v on !he 
effective stiffness C off of a very targe body. Similarly, we 
also have 

sijk~ - (suk:) (~ 

for the compliance tensor field. This ~s a so-called Re;ass 
(or lower) bound S a on S - (C °~v)- 

We note here that: 

(i) the above formulation is sufficiently general tc dea~ 
with other linear transpor~ problems, such as, for 
example, conductivity; 

(it) there are many kinds of random micros~ructures~ 
other than of Voronoi geometry, described by 
random fields with piecew~se-consmm realizations 
such as. for example, matrix-inclusion composkes 
with randomly located inclusions that have random 
diameters. Fig. l(b~: 

(iii) while ~br simplicity and clarity of presentation, the 
discussion is conducted in two dimensions (2oD) 
here, a generalization to 3-D is quite straightfor~ 
ward. 
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Fig. 1. (a) A Voronoi tessellation with an average cell size d; (b) a matrix-inclusion composite with inciusions of average diameter d; 
in both cases a window of size L is indicated. 
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3 T W O  S C A L E - D E P E N D E N T  I N H O M O G E N E O U S  
CONTINUUM APPROXIMATIONS 

First, with the help of Fig. 1, we introduce a square- 
shaped window of scale 

L 
(5 = ~ (7) 

Equation (7) defines a nondimensional parameter (5 _> 1 
specifying the scale L of observation (and/or measure- 
ment) relative to a typical microscale d (i.e. grain size) of 
the material structure. (5 = 1 is the smallest scale we 
consider: scale of a crystal. In view of the fact that the 
Voronoi tessellation is a random medium, the window 
bounds a random structure B~ = {Be(co); co c f~}, where 
Be(co ) is a single realization from a given specimen B(co). 

A continuum-type constitutive law is obtained by 
postulating the existence of an effective homogeneous 
continuum B~°nt(co) of the same volume Ve (i.e. area in 
2-D), whose potential energy U, or complementary 
energy U*, under given uniform boundary conditions 
equals that of a microstructure Be(co) under the same 
boundary conditions 

U(B~°nt(co)) = U(Be(co)) 

o r  

U*(B~a°nt(co)) = U'*(B6(co)) (8) 

Clearly, we are now looking at a random medium 
B~ °"t = {B~6°nt(co); co E a } .  

If  we choose displacement-controlled (essential) 
boundary conditions on OB e 

ui = gijxj (9) 

we note that they generate a uniform strain field { in the 
homogeneous continuum. On the other hand, (9) results 
in some fluctuating field ~ in the heterogeneous 
microstructure Be(co), whose volume average equals ~. 
Now, from (8)1 and (9) we obtain an effective random 
stiffness tensor C} (superscript e stands for essential 
boundary conditions) 

Vee-C~(co)g- = Ire e(x)C(co, x)e(x) d V  (10) 

On the other hand, if we choose stress-controlled 
(natural) boundary conditions on OBa 

ti = 5ijnj (11) 

we note that they generate a uniform stress field ~ in the 
homogeneous continuum B2 °nt, and a fluctuating stress 
field in Be(co), whose volume average equals ~. (8)2 and 
(11) result now in an effective random compliance tensor 
S~ (superscript n stands for natural boundary condi- 
tions) 

(co)(r = [ q(x)S(co, x)if(x) d V (12) 
J Ve 

We make here the following observations: 

(i) Due to the heterogeneity of the microstructure 
Be(co), the inverse 

_c (co) = -1 (13) 

is for any finite (5, in general, different from __C~ of 
(10), see also Ref. 4. 

(ii) In view of the spatial homogeneity of micro- 
structure's statistics, C~(co) and C}(co) converge 
as (5 tends to infinity; this defines a deterministic 
continuum Bdet for a single specimen B(co) 

cdet(co)  __-- cnoo(co) = ceoc(co) (14) 

whereby the window of infinite extent plays the 
role of an RVE of deterministic elasticity theory; 
in other words, it is at (5-+ oo that the 
invertibility of the constitutive law is obtained. 

(iii) Ergodicity of the microstructure implies that 

ca°t(co) = (2°ff v(co c a )  ( i s )  

where C err is the effective response tensor 
(independent of co) of a homogeneous medium. 

(iv) At any finite (5 both response tensors are, in 
general, anisotropic, with the nature of the 
anisotropy dependent on any specific Be(co ). 
This indicates that the model (3) is invalid. On 
the other hand, (14) is isotropic due to the spatial 
homogeneity of the Poisson point process under- 
lying the Voronoi tessellation and the spatial 
homogeneity of P((2). 

(v) Since the window may move in the domain of 
B(co), the essential and natural boundary condi- 
tions (9) and (11) define two different inhomo- 
geneous tensor fields at the scale (5 with 
continuous realizations, which lead to two basic 
random continuum approximations: B~ = {B~(w); 
co E f~} and B~ = {B~(co), co E f~}, respectively; 
accordingly, a window of size (5 may be 
considered as an RVE of these two continuum 
models; the fact that there are two different 
response laws at any finite (5, calls into question 
the unique constitutive law (1)-(2), and, indeed, 
the existence of such a unique law remains a 
moot issue. 5 

(vi) This definition of two inhomogeneous tensor 
fields is conceptually similar, but not the same(!), 
as the procedure of local averaging in the theory 
of random fields applied to a single realization 
C(co); co E ~'~;6 it becomes the same in case of a 
1-D model only. In 2-D and 3-D computational 
mechanics methods have to be implemented to 
find the energies U(Be(co)) and U*(Be(co)) in 
(s). 
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4 S C A L E - D E P E N D E N T  B O U N D S  O N  
C O N S T I T U T I V E  R E S P O N S E  

Observe that the principle of minimum potential energy 
implies that the energy U(w) stored in the body Be(co) 
under boundary conditions (9) does not exceed the 
energy U(w) in the same body subjected to a uniform 
strain field g 

1 VegC~(w)~_ = U(w) <_ O(w) = ½ Ve~£e(w)~ (16) 

Tensor ~e(w) in (16) is the volume average of the tensor 
field __Co(co ) in Be(w). We write (16) as ~ 

£~(~) < ~ ( ~ )  (~7) 

By carrying out ensemble averaging and noting its 
commutativity with volume averaging, as well as the 
ergodic property, we  find 

(_G) _< (_c~) - c  v (18) 

where with _C~ we denoted the stiffness of a single crystal 
(i.e. at scale a = I). Since the ensemble average over all 
the crystal stiffnesses is just the Voigt bound, (18) 
explains why __C v is the upper bound on the average 
stiffness tensor at any scale 6. 

Dually to the above, we observe that the principle of 
minimum complementary energy implies that the energy 
U*(co) stored in the body Be(w ) under boundary 
conditions (11) does not exceed the energy U*(w) i~ 
the same body subjected to a uniform stress field 

1 - n - ~ &  @)e = u*(~) _< 0"(~) = ½v~_&(~)~ (19) 

~n (19) ~e is the volume average of the compliance _S e in 
Be: Again, carrying out the ensemble averaging and 
using the ergodic assumption we arrive at 

(~2} -<  (_S~)- _S a (20) 

which explains why _S R is the upper bound on the 
ensemble average compliance at any scale 8, and, hence, 
the lower bound on the stiffness (_S~) -*. 

Result (18) suggests a conjecture 

(_c~,) >_ ( G )  for 6' < 6 (2~) 

We prove it following Huet  7 by considering a partition 
of the window of scale 6 (i.e. L x L) into four smaller 
square-shaped sub,windows B~, s = 1, 2 , . . . ,  4, of sizes 
8' = 8/2 (i.e. £ / 2  x £/2) .  Now, we define two types of 
boundary conditions, in terms of the strain field g, over 
the larger window with any given microstructure 
Be(w ) = U~4=~Be, (w) : unrestricted 

ui = gijxj x ¢ O B  e (22) 

and: restricted 

ui = eijx/ x ~ abe,, s = 1 ,2 , . . .  4 (23) 

Superscript r in (23) indicates a 'restriction'. In view of 

Hererina,ter, for two fourth-rank tensors A and B, an order 
relation B < A means t~jBijkffkl < tijAijkllklV ~ ~ O. 

the princ~ple of minimum potential energy, the potential 
energies U(w) and U(w)  (i.e unrestricted versus 
restricted conditions) stored in Be(.a under conditions 
(22) and (23), respectively, satisfy the mequaiity 

4 1 
1 - e \ - e s  - 

in which ,.~s ~e' and Ve, are the effective stiffness and 
volume of B~,(w), respectively. After carrying ou~ 
ensemble averaging we obtain (21) from (24) tor 
8 ' = 8 / 2 .  This can now be used :o prove (2t) by 
iteration for arbitrary 8 and 6'. A particular conse-- 
quence of the above result combmee wm~ (t5) is that 

C d e t <  ( C ~ }  f o r  ~ <~ o c  2 5 ?  

Guided by the results (20) and (21) we can conjecture 

(@) > Us2) for 6' < 6 r'",~,'z~,, 

In order to prove it we introduce two natural bounda:? 
conditions on Be(w): unrestricted 

*~i -- ~Oxj x C 8Be (27' 

and: restricted 
A" - ~i - -~#x j  x E S B } . s :  i . 2 . . .  4 (28 ~ 

The principle of  minimum complementary energy 
implies that, the complementar3 energies U~(w) and 
U*~(co) stored in Be(w ) under conditions (27) and (28) 
respectively, satisfy the inequality 

4 
- n ~ ' %  T g!s ~ - 12 V1~S~,(co)g = g'(co) < U*'(co) = ~ ~ Ye, eSe, (co)~ 

(2~ 

in which SeV and Ve are the effective compliance ane 
volume of Be,',w), respectiveiy. After carrying out 
ensemble averaging we prove (26) for 8' 8/2. A proof  
for arbitrary 6' < 6 results by ir.erafion. 

A consequence of (26) combined with (!5) is that 

' ~ /30 S act < ' So) for 6 < oo 

At this stage we can combine the inequalities (i8), 
(z0), (2i), (25), (26) and (30) to obtain a hmrarcay of 
bounds on the effective stiffness tensor C elf 

( S  a ~-~ -(_sp) -~ < \_o~,/ < ~a~J < < ~'~'  

< (_c~,) < (c~) = _c v v #  < ~ ~3i~ 

This is equivalent, by inversion, to a hierarcky of 
bounds on the effective compliance ~ensor 
self= (C ~ff) 

n ,  / C~ , s ~ - (_s~-) > ~_s~) > (Se~ > S f > (c~ -~ ~ ,,_%; 

> (C~) -~ = ICY) -~ W' < ~ 32) 
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Hierarchies of that type were first derived by Huet. 7'8 In 
Refs 9-11 we obtained numerically such hierarchies on 
C} for co-called Delaunay networks, which, by virtue of 
duality to Voronoi tessellations, are generic models of 
granular and fibrous media. While the computational 
complexity increases significantly with growing 6 for 
polycrystalline media due to the necessity of resolution 
of local stress fields in all the crystal cells of  any given 
realization Be(w), computations for all graph-represen- 
table microstructures will have a basic common feature. 
Namely, the sequence of  ever larger windows resulting 
in hierarchies convergent to the c e l l =  (s~ff) -1 repre- 
sents, at every step 6' to 6, the inclusion of a 'strip' of  
neighborhood adjacent to B e, that results in Ba . This 
procedure was called the method of neighborhoods} 2 

5 BOUNDS ON HIGHER-ORDER MOMENTS,  AND 
T WO - P OINT CORRELATION FUNCTIONS 

It is clear from the preceding section that at any 6 < ee 
we deal with two random continuum fields--C~ of the 
approximation B~ and S~ of the approximation B ~ - -  
bounding the response of an actual heterogeneous 
material. It is seen from (14) that the fluctuations (i.e. 
scatter) in these two tensor fields are zero at 6 ~ co. On 
the other hand, they must be strongest at 6 = 1. Thus, 
some monotonic properties resembling (31) and (32) are 
expected for higher-order moments. In fact, by using the 
same partition procedure as before, it can be shown that 
the following inequalities hold between second-order 
moments of successively smaller windows (also in the 
sense of eigenvalues) 

(ceff) 2 m_ ((__ce) 2) < ((Cff) 2) < ((C~,) 2) < ((C~) 2) 

for Vg < 6 (33) 

where the equality on the left-hand side expresses the 
fact that there is no scatter at the infinite scale. Similarly, 
we have for the second-order moments of compliances 

(_S°~) 2 : <(S~)2> _> <(S~)2> >_ <(S~)2> _> <(_Sp)2> 

for V6' < 6 (34) 

In fact, the proof  of (33) and (34) indicates that strong 
inequalities are more likely to hold. These results may be 
generalized to higher powers of n > 2. 

With the help of  the above we immediately confirm 
the heuristic result that the scatter is strongest at the 
microscale 6 = 1, while zero at infinity, which is the 
deterministic continuum limit. 

As noted in point (vi) of Section 3, definitions (10) and 
(12) are analogous to a moving locally averaged random 
field, although no direct straightforward averaging is 
possible, but, rather, computations must be carried out. 
It follows that the normalized autocorrelation (or 
autocovariance) functions of  C/jkl's are to be obtained 
from micromechanics too. This has to be done in the 
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Monte Carlo sense by conducting computations of 
effective constitutive moduli at two different spatial 
positions for a sufficient number of samples B(co) from 
the f~ space. Since there are basically two possible 
definitions of  effective moduli, two different autocorre- 
lation functions will result. 

Analyses carried out so far in this vein by Ostoja- 
Starzewski & Wang 9-u for Delaunay networks lead to 
the following principal conclusions, which may be 
argued to hold for a number of other graph-represent- 
able microstructures (e.g. granular medial3): 

(i) The autocorrelation functions of shear moduli are 
isotropic, while those of  other moduli are anisotropic. 

(ii) The uniform strain approximation results in 
autocorrelation functions practically identical to those 
obtained by the exact method; this suggests a very 
inexpensive computational method for finding the 
second moments. 

(iii) The isotropy of the material is approached only 
asymptotically as 6 -+ c~, and simultaneously with the 
coefficient of variation tending to zero (recall observation 
(iv) of Section 3); thus, the usage of random locally 
isotropic media models with noise-to-signal ratios of up 
to 30%, employed in some recent stochastic finite 
element studies, is physically unrealistic. In fact, even 
the assumption of  a Gaussian character of, say, Young's 
modulus, is unjustified there. Rather, the micromech- 
anics approach should be used in a Monte Carlo sense 
to determine probability densities of the stiffness and 
compliance tensors as a function of  scale 6; such a 
characterization of the microstructures of  Fig. l(a) and 
(b) is presently in progress. 

6 M E T H O D O L O G Y  OF SOLUTION OF 
STOCHASTIC BOUNDARY VALUE PROBLEMS 

6.1 Basic considerations 

Three measuring levels may be introduced: microscale 
t5 -- 1, mesoscale 6meso , and macroscale 6M, where 6 M = 
macroscopic dimension of  the random body B. At this 
point we note that the scatter in both tensors _S} and C} 
becomes eventually negligible at some large, or very 
large, /~, so that we arrive at an invertible constitutive 
law with very small scatter (vide (14) and (15)) 

_c °ff (35) 

may then be taken as the scale of an RVE of a 
deterministic medium Bae t. However, in case 6 of eqn 
(35) is of the order of, or even greater than, the 
macroscale 6M, one is forced to deal with spatial random 
fluctuations on the macroscale. Analytical solutions of 
stochastic boundary value problems may only be 
obtained in those special cases where solutions of a 
corresponding deterministic (i.e. for each co) inhomoge- 
neous anisotropic medium problem are possible. Thus, 
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in general, a recourse to numerical methods will be 
necessary. 

Since two different random anisotropic continua 
resnlt, a given boundary value problem must then be 
solved to find the upper and lower bounds on response 
according as random fields _CC} and C~ with a = 6memo are 
used. While the choice of  CSm~so is up to the analyst, we 
point out that: 

(i) smaller ~meso resolves more details in the 
microstructure and hence more scatter, but the 
difference between both average moduli is larger 
and, hence, the difference between the upper and 
lower bounds on the ensemble-averaged response 
of  an actual medium B is larger too; 

(fi) larger ~Smeso resolves less detail, gives iess scatter 
and closer upper and lower bounds on this 
response; 

(rio adopting effective moduli CUff= C~o with noise 
corresponding to some finite scale is inconsistent; 
moreover,  in that case it woutd not be clear 
whether the noise corresponding to e C~m~ ° or 
Ce~o~o should be adopted; finally, we have 
observation (iv) of  Section 3 regarding the 
anisotropy at a < co. 

In case of  a finite-difference solution of a stochastic 
boundary  value problem of a random continuum, ~5~e~o 
should play the role of  the resolution of  a mesh, which 
typically is constant for the entire mesh. This is 
illustrated in Section 6.2 below. 

In case of  a finite element solution, the resolution of 
the mesh may vary spatially in order to resolve the 
particular details of  sought-for fields in the body 
domain. Hence, ~Smeso corresponds to the size of  a 
particular finite element. 

6.2 An example  proNem 

In keeping with the notes (i) and (ii) at the eiad of  
Section 2, we consider here the elastostatics of  a 
membrane  having the microstructure of  a matrix- 
inclusion composite (vide Fig. l(b)) with both phases 
being locally isotropic. Specifically, we want to study the 
(out-of-plane) displacements u(xl,x2) governed by the 
partial differential equation 

0 c°(-x'co) =f(x) (36) 

corresponding to a random continuum approximation 
B~ or B2 at some scale & Thus, C# in (36) are 
components,  and realizations, of  the random tensor 
fields C~ or Cg. It  is clear that the fluctuations in these 
two fields are directly related to the local fluctuations of  
the volume fraction of  the inclusions, see Ref. 14. 

The microstructure is modeled under the following 
assumptions: 

inclusions are round disks, of  diameter d - 5 A L  
where Al  is the unit length, and occupy i0% of the 
(aerial) voIume fraction of the system: 
both phases are locally isotropic homogeneous 
continua described by 

Ca 0" - C%5~/ (37 

where a stands for the matrix (m) or the inclusion 
(i); 
the distribution of centers of  inclusions corresponds 
~o a planar Poisson process with a restrictmn that 
the distance between any two centers is no less thar~ 
a minimal spacing, taken here a~ t10% of ~he 
diameter. 

The membrane problem is being set up a~ the Poisson 
equation (36) under Dirichlet boundary conditions 

u - 0 on OB f38"~ 

on a square-shaped body domain of the size 
100AI x 100AL and the force distribution 

f =  10-4/(Al)  2. This boundary value problem is t?~.er~ 
solved by treating the continuum equations with t1-~e 
help of  a finite-difference method using a 10 x i0 mesh 
lsee Fig. 2). We see immediately from (7) tha!: ~5 - 2 Le!: 
us consider a Monte  Carlo type approach to this 
stochastic finite-difference problem. Then, as the input 
for solving the problem, each and every ceil of  the mesh 
(i.e. a i0AI x 10A/ window) needs "m be assigned :~ts 
upper and lower modu!i, both being aalculazed at g -- 2. 
There are. m principle, two ways of  doing it: 

(a) by generating, m a Monte  Carlo sense, each 
realization B(0:) in a matrix-inclusion composke 
and calculating C~(co) under (9). and C~(_ under 
(i 1), for every one of one hundred windows: 

(b) by sampling, also in a Mon~e Carlo sense, C~ and 
C~ from the appropriate  s~atistics, m accordance 
with the autocorrelation functions, describing this 
class of  composites. 

Since we have not yet fully developed *:he continuum 
random field characterizations needed in (b), we find it 
expedient "co use the method of (a). To that end. 4© 
different samples of  B(co) are generated and in eac~h case~ 
following the calculations of  the upper and lower moduli 
of  every one of 100 windows. ~wo responses random 
fields geleJ(x, co) and uWJ(x, co) of a given sample are 
obtained by a finke-difference method: here (e} and ( ~  
correspond to the inpu~ of essential and natural moduli 
respectively. Calculation of these modnE is eonductec~ 
using a finite-difference type mesh represcr~ting the 
continuous phases of  matrix and inclusions: in the 
same manner  as used in computat ional  physics ~o 
determine the effective moduli, see. for example. Re f  I5. 

As a measure of  the global response of B(c,:} we chose 
the volume contained under the membrane,  so that we 
obtain a set of 40 "upper' estimates VVe~(co) and a set of  
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Fig. 2. A finite-difference mesh of ~ = 2 superposed on a 
random medium having a matrix-inclusion microstructure. 

40 'lower' estimates V(n)(~). Figure 3 shows the 
ensemble averages (V (e)) and (V (n)) plotted as func- 
tions of  the increasing stiffness C ~ of the inclusions with 
C m kept constant; here C m is taken as unity for the sake 
of  simplicity so that C i is a so-called contrast ,  and both 
plots are normalized by V (e) = V (n) at C i = C m = 1, 
which is the purely deterministic case. As may be 
expected, the deformation of  a membrane according to 
the essential estimates of  moduli is smaller than that 
according to the natural estimates, since the latter ones, 
that is C~, are always (i.e. for any a;) softer than C~. On 
the other hand, an increase in the stiffness of the 
inclusions leads to a stiffening of  the membrane and 
hence to the reduction of deformation and, conse- 
quently, of volumes V (e) and V (n). Thus, we see two 
curves which decrease monotonically and diverge away 
from C i = C rn = 1, becoming ever more widely spread 
with increasing C i. Also, the coefficient of  variation and 
the skewness of both volume measures of  response have 
been found to increase with increasing C i, but the family 
of 40 samples is too small to reduce their uneven 
variability and hence they are not plotted here. 

1.0 

0.9 

0.8 

0.0 I I I I 

0.0 5.0 10.0 15.0 20.0 C i 

Fig. 3. Graph of ensemble average 'upper' and 'lower' 
responses (V (e)) and (V (n)) as function of contrast C i, 
normalized over the response in the deterministic case 

C' = C m = 1 

(iii) A finer net could be used for determination of  the 
effective moduli of windows. However, as pointed out 
earlier, the computational expense in the micromecha- 
nical characterization of two continuum random fields 
of  material properties increases with the window size. 
On the other hand, the computational expense in the 
finite difference (or element) solution decreases with the 
coarseness of the mesh. Thus, it appears that in the 
micromechanically-based stochastic boundary value 
problems there will be an optimum 8meso leading to the 
lowest total computational costs. 
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6.3 Closure 

The membrane example problem presented here is a 
very simple one, but illustrates the role of  both random 
field estimates in describing the microstructure and 
bounding the response of  a random heterogeneous 
medium. Let us discuss several possible refinements. 

(i) A coarser finite-difference mesh could be used to 
solve the membrane problem and this would lead to 
closer upper and lower bounds on the response. 

(ii) A finite element method could be used here, 
and would very likely result in better results than the 
finite differences for the same 6. Also, in place of a 
Monte Carlo approach, the existing analytical 
methods for random fields and stochastic finite elements 
developed in Refs 2 and 3 may be adapted to 
incorporate the micromechanical input; see also refs 16 
and 17. 
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