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Abstract. Continuing in the vein of a recently developed generalization of continuum ther-
momechanics, in this paper we extend fracture mechanics and beam mechanics to materials
described by fractional integrals involving D, d and R. By introducing a product measure in-
stead of a Riesz measure, so as to ensure that the mechanical approach to continuum mechanics
is consistent with the energetic approach, specific forms of continuum-type equations are derived.
On this basis we study the energy aspects of fracture and, as an example, a Timoshenko beam
made of a fractal material; the local form of elastodynamic equations of that beam is derived. In
particular, we review the crack driving force G stemming from the Griffith fracture criterion in
fractal media, considering either dead-load or fixed-grip conditions and the effects of ensemble
averaging over random fractal materials.
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1. Introduction

The present study is not the first one on fracture of fractal materials - several dif-
ferent approaches were developed since the nineties, see e.g. [1-5] and references
therein. However, this study follows the path developed over the past few years
that extended the continuum mechanics to fractal porous media specified by a mass
(or spatial) fractal dimension D, a surface fractal dimension d, and a resolution
lengthscale R [6-8]. Basic balance relations (conservation of mass, linear momen-
tum and angular momentum) have been formulated for such media − be they
fluid or solid − with the help of fractional integrals and generalized (albeit non-
fractional) derivatives. Furthermore, adopting the framework of thermomechanics
with internal variables, we have obtained generalizations of the Clausius–Duhem
inequality, the linear thermoelasticity, the Maxwell-Betti reciprocity, the Hill(–
Mandel) condition and energy principles, and the mean equations of turbulence in
fractal porous media [9-12]. In very recent work we have developed the integral
relations (Stokes and Reynolds Theorems) as well as extremum and variational
principles for elastic and plastic media with fractal geometries, possibly involving
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jumps in field quantities [13]. In all the cases, upon setting D = 3 and d = 2,
one recovers the conventional (very well known) forms of governing equations for
continuous media with Euclidean geometries. When D and d are non-integer and
known, one can enter them into the new formulas to determine the response of a
given material body.

Our approach, like that of Tarasov [6-8], is based on a technique of theoret-
ical physics: dimensional regularization, e.g. [14]. For a function f(x) this is
represented by ∫

W

f(x)dDx =
2πD/2

Γ (D/2)

∫

W

f(x)xD−1dx. (1.1)

That is, we begin with a fractal object embedded in an Euclidean space whose
spatial dimension is not 3 but rather some real number D < 3. The same is done
with the surface of that object, which has its own fractal dimension d, with d
not necessarily equal to D − 1. The balance laws are then written in weak forms
involving volume and surface integrals over the fractal object. Converting these
to conventional integrals via dimensional regularization, results in strong (local)
forms for fractal bodies [6-9]. The key role in that approach is played by the
Green-Gauss theorem for fractal media

∫

∂W

fknkdAd =
∫

W

c−1
3 (D,R)∇k (c2 (d,R) fk) dVD, (1.2)

where fk is a vector field (in subscript notation) and

dAd = c2 (d,R) dA2 dVD = c3 (D,R) dV3. (1.3)

Thus, we can rewrite the fractional integrals in (1.2) as conventional ones
∫

∂W

c2 (d,R) fknkdA2 =
∫

W

∇k (c2 (d,R) fk) dV3, (1.4)

and, effectively, deal with formulas in (conventional) Euclidean setting, provided
we have the coefficients c3 and c2. Indeed, the latter are specified according to the
fractional integral adopted. Tarasov defines them in the Riesz form and then it
follows that

c2 (d,R) = |R|d−2 22−d

Γ (d/2)
,

c3 (D,R) = |R|D−3 23−DΓ (3/2)
Γ (D/2)

.

(1.5)

Also, the following operators (or, generalized derivatives) are used

∇D
k f = c−1

3 (D, R)
∂

∂xk
[c2 (d,R) f ] ≡ c−1

3 (D, R)∇k [c2 (d,R) f ] ,
(

d

dt

)

D

f =
∂f

∂t
+ c (D, d, R) vk

∂f

∂xk
,

(1.6)
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where c (D, d, R) = c−1
3 (D,R) c2 (d,R).

Observe:
(i) Postulating c2 and c3 in (1.5), the fractional power law of mass is admitted,

which forms the physical foundation of our approach. One can further note that,
in practice, the volume dV3 is not really infinitesimal but an upper length cutoff
for the fractal structure. The lower one is given by whatever molecular scale in a
specific problem. By appropriately modifying the forms of c2, c3, the asymptotic
properties can be incorporated. Thus, the theory is suited for physical fractals −
sometimes called pre-fractals − as opposed to mathematical fractals without any
cutoffs. This is shown in Fig. 1.

Figure 1. Fracture and peeling of a microbeam of thickness L off a substrate. A representative
volume element dV3 imposed by the pre-fractal structure characterized by upper cutoff scale L
is shown. Thus, the beam is homogeneous above the length scale L. By introducing random
variability in that structure, one obtains a random beam according to (4.6).

(ii) Mathematically, the theory involves fractional integrals but conventional
derivatives plus the c3 and c2 coefficients, with the order of integrals being directly
given by fractal dimensions of volumes (D) and surfaces (d). Having conventional
derivatives makes the present theory easier to deal with than those with fractional
derivatives.

(iii) In view of (i) the theory is limited to homogeneous fractal media. It may be
extended to inhomogeneous (and, therefore, via extension to an ensemble) random
media by following a standard procedure in stochastic solid mechanics [15].
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(iv) The equations governing problems in one dimension cannot be consistently
obtained from the equations governing problems in three dimensions. For example,
the one dimensional fractal wave equation is not equivalent to that of a plane wave
in three dimensions.

Point (iv) represents a drawback stemming from the fact that c2 and c3 are
based on the Riesz measure which confines the analysis only to isotropic cases.
That drawback can be removed by introducing a product measure instead, whereby
a possible anisotropy is also incorporated, further ensuring that the mechanical ap-
proach to continuum mechanics is consistent with the energetic approach. To this
end, note that, while the mass distribution in conventional continuum mechanics
[16] is

dµ(x) = ρ(x)dV3, (1.7)

where ρ(x) is mass density and dV3 is the Lebesgue measure in R3, the product
measure we now introduce is

dµk(xk) = ρ(x)c1(αk, xk)dxk, k = 1, 2, 3. (1.8)

Thus, while (1.7) applies to a non-fractal mass distribution M ∼ x1x2x3, (1.8)
applies to a fractal mass distribution M ∼ xα1

1 xα2
2 xα3

3 , the total fractal dimension
being D = α1+α2+α3. For simplicity, here we adopt a form based on a Riemann-
Liouville integral

c
(k)
1 =

|xk|αk−1

Γ(αk)
, k = 1, 2, 3, (1.9)

so as to replace (1.5) by

c
(k)
2 = c

(i)
1 c

(j)
1 =

|xi|αi−1|xj |αj−1

Γ(αi)Γ(αj)
, i, j 6= k,

c3 = c
(1)
1 c

(2)
1 c

(3)
1 =

|x1|α1−1|x2|α2−1|x3|α3−1

Γ(α1)Γ(α2)Γ(α3)
.

(1.10)

The operators (1.6) still apply, with c = c−1
3 c2.

Continuing in the vein of the above developments, in this paper we extend
fracture mechanics to materials described by D, d and R. Since the fracture profile
is usually observed to have an irregular and nonsmooth geometry, a methodology
involving fractal dimensions and fractional integrals is expected to be physically
more reasonable. In general, we study the energy aspects of fracture and, as an
example, a beam made of a fractal material. In particular, we re-examine the crack
driving force G stemming from the Griffith fracture criterion extended to fractal
media, considering either dead-load or fixed-grip conditions, derive the equations
governing a fractally structured Timoshenko beam, then study peeling of a beam
off a substrate. Finally, we extend the theory to random media, and examine the
effects of ensemble averaging over random fractal beams.
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2. Griffith’s theory for elastic-brittle solids with fractal geome-
tries

According to Griffith’s theory of elastic-brittle solids [17], the strain energy release
rate G is given by

G =
∂W

∂A
− ∂Ue

∂A
= 2γ, (2.1)

where A is the crack surface area formed, W is the work performed by the applied
loads, Ue is the elastic strain energy, and γ is the energy required to form a unit of
new material surface, e.g. [18]. The material parameter γ is conventionally taken
as constant, but, given the presence of a randomly microheterogeneous material
structure, its random field nature is sometimes considered explicitly [1,2]. Recog-
nizing that the random material structure also affects the elastic moduli (such as
E), the computation of Ue and G in (2.1) also needs to be re-examined [19]. With
reference to Fig. 2, we consider a 3-D material body described by D and d, and
having a crack of depth a and a fractal dimension DF .

Figure 2. Showing a crack of depth a, with a fractal dimension DF .

The step taken here is to admit a fractal character of γ and E; a generalization
to a statistical ensemble, thereby admitting randomness, will be carried out in
Section 4. Thus, focusing on a fractal porous material, we have

Ue =
∫

W

ρ u dVD =
∫

W

ρ u c3 dV3, (2.2)

where c3 is given by (1.10)2. By revising Griffith’s derivation for a fractal elastic
material, we then obtain

Ue =
πa2c2

1σ
2

8µ
(K + 1)c3, (2.3)
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with ν being the Poisson ratio, and

K =

{
3− 4ν for plane strain
3− ν

1 + ν
for plane stress

(2.4)

the Kolosov constant.
Dead-load conditions. Equation (2.1) becomes

G =
∂Ue

∂A
= 2γ. (2.5)

If A = 2a× 1, this gives the critical stress

σc =

√
2γE

(1− ν2)πa c3 c2
1

. (2.6)

However, if the fracture surface is fractal of a fractal dimension DF , then we
should use ∂/∂lDF instead of ∂/∂a. Now, since we have (note Fig. 2)

dlDF = c1(DF, a)da, (2.7)

the new partial derivative becomes

∂

∂lDF
=

∂

c1∂a
, (2.8)

where

c1(x,DF ) =
|x|DF−1

Γ(DF )
. (2.9)

As a result,

σc =

√
2γE

(1− ν2)πa c3 c1
. (2.10)

Fixed-grip conditions. We consider the case of a crack of depth a and width
B in plane strain. In this case the displacement is constant (i.e., non-random),
and the load is random. Now, only the first term in (2.1) remains, so that

G = −∂Ue (a)
B∂lDF

= −∂Ue (a)
Bc1∂a

. (2.11)

3. Timoshenko beam with a fractal geometry

First we recall that a Timoshenko beam has two degrees of freedom (q1, q2) at
each point: the transverse displacement q1 = w and the rotation q2 = ϕ. Given
its fractal structure (of dimension D) in the x direction, which can readily be
measured by image analysis, the dx element is replaced by

dlD = c1(D,x)dx, (3.1)
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where, by the argument leading to (2.9), c1(x, D) = |x|D−1/Γ(D).
The kinetic energy, which in the non-fractal case is (with ϕ̇ ≡ ∂ϕ/∂t)

T =
1
2
ρ0

∫ l

0

[
I (ϕ̇)2 + A (ẇ)2

]
dx, (3.2)

in view of (3.1), gets modified to

T =
1
2
ρ0

∫ l

0

[
I (ϕ̇)2 + A (ẇ)2

]
dlD. (3.3)

The potential energy, which in the non-fractal case is (with ϕ,x ≡ ∂ϕ/∂x)

U =
1
2

∫ l

0

[
EI (ϕ,x )2 + κµA (w,x−ϕ)2

]
dx, (3.4)

again in view of (3.1), gets modified to

U =
1
2

∫ l

0

[
EI

(
∂ϕ

∂lD

)2

+ κµA

(
∂w

∂lD
− ϕ

)2
]

dlD

=
1
2

∫ l

0

[
EIc−2

1 (ϕ,x )2 + κµA
(
c−1
1 w,x−ϕ

)2
]
c1dx.

(3.5)

Assuming null external distributed load and moment, the Lagrangian of the beam
system is

L = T − U =
1
2

∫ l

0

{
ρ0

[
I (ϕ̇)2 + A (ẇ)2

]
c1

−
[
EIc−2

1 (ϕ,x )2 + κµA
(
c−1
1 w,x−ϕ

)2
]}

c1dx.

(3.6)

Next, the Euler–Lagrange equations

∂

∂t

[
∂L

∂q̇i

]
+

3∑

j=1

∂

∂xj

[
∂L

∂ (qi,j)

]
− ∂L

∂qi
= 0 (3.7)

imply these equations of elastodynamics governing the fractal Timoshenko beam

ρ0Ac1ẅ =
[
κµA

(
c−1
1 w,x−ϕ

)]
,x ,

ρ0Ic1ϕ̈ =
(
EIc−1

1 ϕ,x
)
,x +κµAc1

(
c−1
1 w,x−ϕ

)
.

(3.8)

Following the definition of generalized derivatives (1.6) (in 1D case: ∇D
x f =

c−1
1 f,x), the above equation has the form

ρ0Aẅ = ∇D
x

[
κµA

(∇D
x w − ϕ

)]
,

ρ0Iϕ̈ = ∇D
x

(
EI∇D

x ϕ
)

+ κµA
(∇D

x w − ϕ
)
.

(3.9)
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Note that the beam equation can also be derived from force and moment bal-
ance analysis, which should be consistent with (3.9). To start the development,
we recall the expressions of shear force (V ) and bending moment (M) in the non-
fractal case

V = κµA (w,x−ϕ) , M = −EIϕ,x . (3.10)

In view of (3.1), this gets modified to

V = κµA
(∇D

x w − ϕ
)
, M = −EI∇D

x ϕ. (3.11)

The balance equations of force and moment in the non-fractal case give

ρ0Aẅ = V,x , ρ0Iϕ̈ = V −M,x , (3.12)

which, again on account of (3.1), this gets modified to

ρ0Aẅ = ∇D
x V, ρ0Iϕ̈ = V −∇D

x M. (3.13)

Substituting (3.11) into (3.13), we obtain (3.9) again. In other words, the mechan-
ical (Newtonian) approach is consistent with the energetic (Lagrangian functional)
approach. On the other hand, we note that the replacement of the derivative f,x

by∇D
x f = c−1

1 f,x is necessary for introducing the fractional integral of mass, or the
results under such two approaches will not be equivalent. The underlying physical
mechanism may lie in the fact that the fractional power law of mass implies a frac-
tal dimension of scale measure, so the derivatives involving spatial scales should
be modified to incorporate such effect by postulating c1 ∼ c3.

In the case of elastostatics and when the rotational degree of freedom ceases to
be independent (ϕ = ∂w/∂lD = ∇D

x w), we find the equation of a fractal Euler–
Bernoulli beam

∇D
x ∇D

x

(
EI∇D

x ∇D
x w

)
= 0, (3.14)

This shows that
M = EI∇D

x ∇D
x w. (3.15)

The relationship between the bending moment (M) and the curvature
(∇D

x ∇D
x w) still holds, while c1 enters the determination of curvature (∇D

x ∇D
x w =

c−1
1

(
c−1
1 w,x

)
,x).

4. Peeling a layer off a substrate

Dead-load conditions. Here we return to the system in Fig. 1. The case of
constant load implies that the force is prescribed, and only the second term in
(2.1) remains. Assuming an Euler–Bernoulli beam, the strain energy is

U(a) =
∫ a

0

M2

2IE
dx, (4.1)

where a is crack length, M is bending moment, I is beam’s moment of inertia, and
E is its elastic modulus. Henceforth, we simply work with a = A/B, where B is
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the constant beam (and crack) width. In view of Clapeyron’s theorem, the strain
energy release rate may be written as

G =
∂U

B∂a
. (4.2)

For a layer modeled as a fractal Euler–Bernoulli beam whose equation was
derived in the previous section, we have

U(a) =
∫ a

0

M2

2IE
dlD =

∫ a

0

M2

2IE
c1dx, (4.3)

so that
G =

∂U

c1B∂a
. (4.4)

Now, if the beam’s material is random, E is a random field parametrized by x,
which we can write as a sum of a constant mean 〈E〉 and a zero-mean fluctuation
E′(x)

E(ω, x) = 〈E〉+ E′(ω, x) ω ∈ Ω, (4.5)

where Ω is a sample space. Take E′(x, ω) as a wide-sense stationary random field.
A random material is thus defined as an ensemble

B = {B(ω); ω ∈ Ω} = {E(ω, x); ω ∈ Ω, x ∈ [0, a]}. (4.6)

Here, and in the following, we explicitly show the dependence on ω, whenever we
wish to indicate the random nature of a given quantity prior to ensemble averaging.

Clearly, U is a random integral, such that, for each and every realization ω ∈ Ω,
we should consider

U(a,E (ω)) =
∫ a

0

M2c1dx

2IE(ω, x)
. (4.7)

Upon ensemble averaging, this leads to an average energy

〈U(a,E)〉 =
〈∫ a

0

M2c1dx

2I [〈E〉+ E′(ω, x)]

〉
. (4.8)

In the conventional formulation of deterministic fracture mechanics, random
microscale heterogeneities E′(x, ω) are disregarded, and (4.7) is evaluated by sim-
ply replacing the denominator by 〈E〉, so that

U(a, 〈E〉) =
∫ a

0

M2c1dx

2I 〈E〉 . (4.9)

Clearly, this amounts to postulating that the response of an idealized homogeneous
material is equal to that of a random one on average. To make a statement
about 〈U(a,E)〉 versus U(a, 〈E〉), and about 〈G(E)〉 versus G(〈E〉), first, note the
random field E is positive-valued almost surely. Then, Jensen’s inequality yields
an inequality between harmonic and arithmetic averages of the random variable
E (ω)

1
〈E〉 ≤

〈
1
E

〉
. (4.10)
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whereby the x-dependence is immaterial in view of the assumed wide-sense sta-
tionary of field E. With (4.8) and (4.9), and given that the conditions required
by Fubini’s theorem are met, this implies that

U(a, 〈E〉) =
∫ a

0

M2c1dx

2I 〈E〉 ≤
∫ a

0

M2c1

2I

〈
1
E

〉
dx

=
〈∫ a

0

M2c1dx

2IE(ω, x)

〉
= 〈U(a,E)〉 ,

(4.11)

Now, defining the strain energy release rate G(a, 〈E〉) in a hypothetical material
specified by 〈E〉, and the strain energy release rate 〈G(a, E)〉 properly ensemble
averaged in the random material {E(ω, x); ω ∈ Ω, x ∈ [0, a]}

G(a, 〈E〉) =
∂U(a, 〈E〉)

Bc1∂a
〈G(a,E)〉 =

∂ 〈U(a,E)〉
Bc1∂a

, (4.12)

and noting that the side condition is the same in both cases

U(a, 〈E〉) |a=0= 0 〈U(a,E)〉 |a=0= 0, (4.13)

we find
G(a, 〈E〉) ≤ 〈G(a,E)〉 . (4.14)

This provides a formula for the ensemble average G under dead-load conditions
using deterministic fracture mechanics for Euler–Bernoulli beams made of fractal
random materials.

Just like in the case of non-fractal materials [19], the inequality (4.14) shows
that G computed under the assumption that the random material is directly re-
placed by a homogeneous material (E(x, ω) = 〈E〉), is lower than G computed
with E taken explicitly as a spatially varying material property.

Fixed-grip conditions. On account of (2.11), assuming that there is loading
by a force P at the tip, we obtain

G = − u

2Bc1

∂P

∂a
. (4.15)

Take now a cantilever beam problem implying P = 3uEI/(c1a)3. Then, we find

〈G〉 = − u

2Bc1

〈
∂P

∂a

〉
= − u

2Bc1

∂ 〈P 〉
∂a

=
9u2I 〈E〉
2B(c1a)4

. (4.16)

Since the load − be it a force and/or a moment − is always proportional to E,
this indicates that G can be computed by direct ensemble averaging of E under
fixed-grip loading, and, indeed, the same conclusion carries over to Timoshenko
beams.

The foregoing analysis may be extended to (i) fractal Timoshenko beams, (ii)
mixed-loading conditions and (iii) stochastic crack stability by generalizing the
study of non-fractal, random beams carried out in [19].
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5. Closure

While several different approaches to fracture of fractal materials were developed
since the nineties, the present method has its particular advantages. Specifically,
(i) it is suited to deal with pre-fractals as opposed to mathematical fractals without
any cutoffs; (ii) it involves fractional integrals of the order directly related to
fractal dimensions of volumes and surfaces but conventional derivatives; (iii) it
can handle inhomogeneous and/or anisotropic fractal media; (iv) the equations
governing the problems in one dimension can be consistently obtained from the
equations governing the problems in three dimensions.

Our study is confined to fractal, elastic-brittle materials, with focus being on
the determination of continuum mechanical equations accounting for the fractal
dimension of mass distribution (D), the fractal dimension of surface (d) and the
resolution lengthscale R. We study the energy aspects of fracture and re-examine
the crack driving force G stemming from the Griffith fracture criterion extended
to fractal media. We also derive equations governing a Timoshenko beam with a
fractal geometry, and specialize it to a Bernoulli-Euler beam. On that basis, we
then consider either dead-load or fixed-grip conditions in peeling of a beam off a
substrate. Finally, we generalize the model to random fractal beams, and study
the effects of ensemble averaging.
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