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Micromechanically based stochastic finite elements 

K. Alzebdeh and M. Ostoja-Starzewski 

Department of  Materials Science and Mechanics, Michigan State UniL'ersity, East Lansing, MI 48824-1226, USA 

Abstract. A stochastic finite element method for analysis of effects of spatial variability of material properties 
is developed with the help of a micromechanics approach. The method is illustrated by evaluating the first and 
second moments of the global response of a membrane with microstructure of a spatially random inclusion- 
matrix composite under a deterministic uniformly distributed load. It is shown that two mesoscale random 
continuum fields have to be introduced to bound the material properties and, in turn, the global response from 
above and from below. The intrinsic scale dependence of these two random fields is dictated by the choice of 
the finite element mesh. 

Introduction 

In elliptic boundary value problems there may be three different sources of randomness: 
distortion of the boundaries, fluctuation in the external force fields, and heterogeneity of the 
medium. All of these sources necessitate a stochastic generalization of the conventional 
solution methods. Such generalizations of the finite element method were attempted since the 
early eighties with a goal of grasping the randomness of either external force fields or 
medium's variability [1-6]. However, the latter aspect has been lacking a correct formulation 
in all the previous works, mainly due to purely hypothetical assumptions concerning the 
random field description of the material. That  is, in the area of linear elastic structures, all 
these studies relied on a stochastic interpretation of the locally isotropic constitutive law 

o'ij = a ( x ,  W)ekkaij + 2/x(x,  w)Eij, (1) 

where the Lam6 constants are taken to be random fields. In fact, most works considered the 
Young's modulus to be random field, oftentimes of Gaussian type, with the Poisson's ratio to 
be constant. 

In this paper we develop a random continuum model using the micromechanics approach, 
and then use it as input for solution of a specific boundary value problem. As a starting point 
we take the fact that discreteness of materials is the key cause of their nondeterministic 
constitutive response. We follow [7], where the out-of-plane response of a two-dimensional 
linear elastic matrix-inclusion composite with a spatially random distribution of inclusions was 
studied; this gives, at the same time, information on in-plane conductivity of such a material. 
However, in contrast to [7], where a stochastic finite difference method was developed for the 
solution of a boundary value problem, the present paper develops, for the first time, a 
micromechanically based stochastic finite element method. The link between the microstruc- 
ture and the finite element method is provided by a so-called window introduced in our 
previous works [8-10], which is shown to correspond to a single finite element cell. 
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The micromechanical basis 

A fundamental  role in our formulation is played by the concept of a random medium, 
which, as is commonly done in stochastic mechanics [6], is taken as a family B = {B(w); 
w e ~(2} of deterministic media B(w), where w indicates one specimen, and S2 is an underlying 
sample (probability) space. Formally, J2 is equipped with a o--algebra F and a probability 
distribution P. In an experimental setting P may be specified by a set of stereological 
measurements,  while in a theoretical setting P is usually specified by a chosen model of a 
microstructure. For example, in case of a polycrystalline material we may take every specimen 
B(¢o) to be modeled by a realization of a Voronoi tessellation (Fig. l(a)), while in case of a 
matrix-inclusion composite we may take it as a certain planar point process with exclusion of 
overlapping of disks (Fig. l(b)). We assume that these microstructures are linear elastic, and 
the statistics of microscale properties are space-homogeneous and ergodic. While, for simplic- 
ity and clarity of presentation, the discussion is conducted in two dimensions (2-D) here, a 
generalization to 3-D is quite straightforward. 

Now, with the help of Fig. 1, we introduce a window of size 

a = L / d .  (2) 

Equation (2) defines a nondimensional parameter  6 specifying the scale L of observation (and 
measurement)  relative to a typical microscale d (i.e. grain size) of the material structure. In 
view of the fact that either one of the microstructures in Fig. 1 is a result of a certain random 
point process in plane, the window bounds a random microstructure B~ = {B~(~o); ~o e S2}, 
where Ba(w) is a single window realization from a given specimen B~(w). 

In order to define the effective moduli of Ba, we introduce two types of boundary 
conditions on its boundary aBa: (1) displacement-controlled (essential) boundary conditions 
on ~B~ 

= x , ,  ( .3)  

and (2) stress-controlled (natural) boundary conditions on 0B6 

t, =  ijn i. ( 4 )  

It follows that in a continuum setting the effective stiffness tensor of any specific body 
B~(w) is either 

or  cg=cg(,o), ( s )  

° 
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Fig. 1. Showing a window of size ~ = L / d  (a) in a Voronoi microstructure, and (b) in a matrix-inclusion composite. 
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depending on whether  (3) or (4) is used; superscripts e and n indicate essential and natural 
boundary conditions, respectively. It follows from the principles of minimum potential energy 
and complementary energy that #~ 

(6) 

where C eff denotes the effective stiffness tensor of a deterministic continuum corresponding 
to the scale 6 -~ ~, and ( ) denotes ensemble averaging. 

The principal conclusions to be made here are [7,10]: 
(i) C R and C v are the Reuss and Voigt bounds, respectively. 
(ii) The scatter  in Cff and C~ is strongest at the scale 3 = 1, and it tends to 0 as 6 ~ ~. 
(iii) For any finite 3, both these moduli are, in general, anisotropic. 
(iv) Since for any 6 > 1, B~ is a random rather than a deterministic medium, the window 

plays the role of a representative volume element (RVE) of a continuous random medium 
B~ = {B~(~o); w ~/2}; in view of (5), this continuum approximation is, generally, nonunique 
since we have two random tensor fields Cff and C~ at our disposal. This conclusion together 
with (iii) indicates that the locally isotropic unique random tensor field (1) should not be 
assumed. 

(v) The scatter in both elasticity tensors becomes eventually negligible at some large, or 
very large 8, so that we arrive at an invertible constitutive law in the sense that 

Cg(w) = [ S ~ ( w ) ] - '  = C e'f Vw ~g2, (7) 

where Cg and S~ are obtained from (3) and (4), respectively. ~ may then be taken as the scale 
of an RVE of a continuous deterministic medium Bde  t = B,g. 

(vi) Definitions (5) 1 and (5) 2 are analogous to a moving locally averaged random field, 
although no direct straightforward averaging is possible, but, rather, computations must be 
carried out. It follows that the normalized autocorrelation (or autocovariance) functions of 
C~jk~'S are 6-dependent.  Thus, in contradistinction to the procedures employed by others - the 
"weighted integral method"  [5], or the "spectral  representat ion method"  [6] - which have no 
connection to the material microstructure, the definition of the autocorrelation functions 
together with our method of windows outlined above provides a rigorous basis for determin- 
ing the autocorrelation functions [8,9,11]. 

The above observations suggests a methodology of solution of stochastic boundary value 
problems. Three measuring levels may be introduced: microscale 6 = 1, mesoscale 6meso, and 
macroscale 6M, where 6 M = macroscopic dimension of the body B(to). In case 6 of eqn. (7) is 
on the order of, or even greater  than, the macroscale 6M, one is forced to deal with spatial 
fluctuations on the macroscale. Thus, a statistical rather  than a deterministic continuum 
approximation is applicable. Accordingly, a solution of the problem at hand is then conducted 
with a certain choice of a mesoscale 6m~o of an RVE of the statistical continuum. However, 
since two alternative definitions of boundary conditions are possible - displacement-con- 
trolled (3) and stress-controlled (4) - two different random anisotropic continua result!. Thus, 
a given boundary value problem may then be solved analytically or numerically - by, say, 
stochastic finite elements - to find the upper  and lower bounds on response according as C~ 
and C~ are used. 

'~ For  two four th - rank  tensors  A and B, an o rde r  re la t ion  B ~< A means  

tijBiikltkl <~ tijAijkltkl Vt ~ 0 
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Fig. 2. Showing a membrane made of a 
matrix-inclusion composite with a finite 

element mesh of resolution 8. 

The finite element formulation 

A triangular finite element for analysis of various problems in mechanics is briefly 
described here. The basic steps in setting up the finite element equations for out-of-plane 
displacements of a membrane are outlined. We note, however, that the same methodology is 
applicable to more general cases of materials with elastic as well as inelastic microstructures, 
e.g. plane stress, plane strain, and three-dimensional problems. 

With reference to Fig. 2, we start with a square-shaped finite element mesh, and for the 
sake of simplifying the algebra, we subdivide each such element into two right-sided triangles. 
However, the key point is that, in accordance with conclusion (v) of the previous section, each 
square element represents a window. Thus, in accordance with the statement following eqn. 
(2), 6 is truly the lengthscale of a meso-type random continuum approximation which is 
dictated by the chosen finite element mesh. We make a reference to [12] for a discussion of 
these aspects and of the stochastic variational formulation. 

Now, the nodal displacement vector for the element is (superscript e indicates an element) 

u T 
{ ue} = [HI H2 3] " ( 8 )  

While, the displacement at any point inside the element is given in terms of the nodal 
displacement vector as 

u"= [ N, N 2 N3]{ue}, (9) 

where [N] is the shape functions matrix given by 

1 
N i = ~ ( a i + b i x + c i Y  ) w h e r e i = l , 2 , 3 ,  (10) 

in which A is the element area and a, b, c are coefficients defined in terms of the nodal 
coordinates. The gradient vector of the displacement is given by 

g r { u  e} = [ B ] { u e } ,  ( 1 1 )  
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where 

gr{ue} = i)u/OyJ' [B] = c, c 2 c 3 " 

The stiffness matrix of each element can be calculated by 

[K el = fA[B]T[c][B] dA, (12) 

where [C] is the material moduli matrix given by either C~ or C~ obtained in the previous 
section. At this stage, we synthesize the global stiffness matrix from those of the sub-elements 
over the entire region as 

[ K ] =  ~ [ K q ,  (13) 
e-- I  

in which n is the total number of finite elements. Finally, after applying the specified 
boundary conditions, the unknown quantities are obtained by solving a system of linear 
algebraic equations (by a Gausian method) in the form of 

[K]{U} = {F}. (14) 

Here, {U} and {F} are the global displacement and force vectors, respectively. 

Numerical results 

The micromechanics-based stochastic finite element is used here to solve an elastostatic 
membrane problem. The microstructure is taken as a matrix-inclusion composite with both 
phases being locally isotropic. The out-of-plane deformation U(Xl, x2) governed by the partial 
differential equation 

axia [Cij(x, ~o) au ~x~ = f ( x )  (15) 
L 

will be obtained by applying the stochastic finite element method of Section 3 corresponding 
first to a random continuum approximation B~, and then to B~, at a given scale 6. Thus, C~j 
in (15) are components, and realizations, of the random tensor fields C~ or C~. 

The microstructure is modeled under the following specifications: 
(i) Inclusions are round nonoverlapping disks of the diameter d = 5A/, where Al is the 

unit length, and occupy 10% of the volume of the medium; 
(ii) Both phases are locally isotropic homogenous continua; 
(iii) The distribution of the inclusions corresponds to a planar Poisson process with the 

restriction that the minimal spacing between any two centers of 170% of the inclusion 
diameter to avoid the stress concentration problem; 

(iv) The membrane problem is being expressed in the form of a Poisson equation (15), 
under Dirichlet boundary conditions u = 0 on /~B of a square-shaped body domain of the size 
400Al × 400A/, subjected to a uniform force distribution: f =  10-2/(Al) 2. 

Now, solution of the problem may be summarized in the following steps: 
(a) Generation, in a Monte Carlo sense, of one realization B(~o) of the matrix-inclusion 

composite according to the assumptions stated above. 
(b) Microstructure discretization: the domain is discretized into n × n square windows 

(RVE's) for the purpose of obtaining the upper and lower moduli. The calculation of these 
moduli is conducted for each window using a finite-difference type mesh representing the 
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Fig. 3. Graph of the ensemble average "upper"  and "lower" responses, normalized over the deterministic case 

C = C m = 1.6 (~) and g(n~ correspond to C~ and C~ in eqn. (15), respectively. 

continuous phases of the matrix and inclusions. The size of the finite difference mesh inside 
the window is m x m, where m is related to the chosen scale factor 6 by m = 56. Here 
n = 806, where n is the number  of windows in the x~ (and x 2) direction. 

(c) Finite element discretization: for a given 6, the dimension of the problem is discretized 
by 2(n × n) finite elements (see Fig. 2) for the purpose of obtaining the global response 
u(~(x, o~) and u(n)(x, w) of eqn. (15). For each finite element, the input of the upper  moduli 
C~ and lower moduli C~ are those obtained via the micromechanical model under the 
conditions (3) and (4), respectively. 

To take into account the randomness in the inclusions' distribution, ten different B(w)'s 
are generated and the solution for the global response is obtained. As a measure of the global 
response of B(w), we choose the volume V(w) under the membrane,  so that we obtain a set 
of 10 "uppe r "  estimates vtC)(o~) and a set of 10 "lower" estimates V(n)(w). Figure 3 shows the 
ensemble averages <V (c~> and <V (n)> for three different values of 6 plotted as functions of 
increasing stiffness C i of the inclusion with C m kept constant. Here C m (matrix stiffness) is 
taken as unity for simplicity, so that C i becomes a so-called contrast and all the plots are 
normalized by V {~) = V {n) at C ~ = C m = 1, which is the purely deterministic case. As may be 
expected, the membrane  deformation under essential boundary condition is smaller than that 
under the natural boundary condition, since the moduli C~ are always stiffer than the C#. On 
the other hand, an increase in the stiffness of the inclusions leads to stiffening of the 
membrane,  and hence, to the reduction of the deformation and consequently, of V (~) and 
V ("). Therefore,  for a fixed 6, both curves are decreasing monotonically and diverging away 
from C i =  C m= 1, with increasing CL In addition, for a fixed contrast, we see that the two 
responses (bounds) get closer with increasing 3, and have a tendency to converge to a unique 
value as 6 ~ oc, which corresponds to the deterministic case. However, we should note that 
this limit can only be attained in the approximate sense of eqn. (7), providing the fluctuations 
in stiffness disappear for such large finite elements. Thus, it is expected that, for a fixed 
contrast, the scatter in the responses (as measured here by the standard deviation) decreases 
when 6 goes up, see Fig. 4. On the other hand, for any fixed 6, it increases with the contrast 
(i.e. microstructural randomness) increasing. 

The membrane  example problem presented here is a simple but generic one - it illustrates 
the essential features of a micromechanics-based approach in grasping the spatial heterogene- 
ity of materials in stochastic finite element analyses. Two random fields have to be considered 
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in describing the microstructure and bounding the response of the heterogenous medium, 
with the choice of both fields being dictated by choice of a finite element mesh. 

We end with a note that the finer the finite element mesh, the higher is the computational 
cost of a finite element solution, but the lower is the computational cost of a micromechanical 
specification of the material. These and other related issues are discussed in [12]. 
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